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Abstract. The Reynolds’ analogy between the Stanton number (St) and the skin friction coefficient (cf) is
popularly believed to hold when St increases with increasing cf , for simple situations. In this investigation,
the validity of Reynolds’ analogy between St and cf for micro-convection of liquids with variations in fluid
properties is re-examined. It is found that the Sieder-Tate’s property-ratio method for obtaining Nusselt
number corrections is theoretically based on the validity of Reynolds’ analogy. The inverse dependence of
Reynolds number and skin friction coefficient is the basis for validity of the Reynolds’ analogy, in convective
flows with fluid property variations. This leads to the unexpected outcome that Reynolds’ analogy now
results in St increasing with decreasing cf . These results and their analyses indicate that the validity of
Reynolds’ analogy is based on deeper foundations, and the well-known validity criterion is a special case.

PACS. 44.15.+a Channel and internal heat flow – 44.27.+g Forced convection

1 Introduction

The effect of fluid viscosity variations on forced convective
heat transfer was first modeled by Sieder and Tate [1] in
1936. They used a correction factor to the Nusselt number
(Nu), which is the ratio of dynamic viscosity at wall (µw)
and at bulk mean fluid temperature (µm) raised to expo-
nent m. Thus, Sieder-Tate correlation, which hitherto is
believed to be purely empirical, is given as,

(Nu/NuCP) = (µm/µw)m; (1)

where, m ∼ 0.14, and NuCP is the Nusselt number for
constant fluid properties. Later, Herwig [2] and Herwig
et al. [3] analyzed the influence of variable fluid properties
on Nu for laminar fully developed flows. Their analyses
were within the framework of an asymptotic theory, which
is applicable for small heat flux (q′′w) and high Reynolds
numbers (Re). However, micro-convection is characterized
by high q′′w and low Re; hence, the temperature gradi-
ents are much steeper. Therefore, the effects of variations
in fluid properties are much stronger, which necessitates
the consideration of additional physical mechanisms that
significantly affect Nu [4–7]. Investigations by Mahulikar
& Herwig [5,6] report physical effects in micro-convection
due to variations in µ and thermal conductivity (k) of
incompressible fluid (water). Physical effects in micro-
convection due to variations in density (ρ) of compressible
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fluid (air) are reported by Mahulikar et al. [4]. Physical ef-
fects due to variations in µ and k of air in conjunction with
variations in ρ are reported by Mahulikar and Herwig [7].

Experiments for obtaining the Fanning friction fac-
tor (f) for different Re in microchannels are reported by
Harley et al. [8]. The prime objective of their study was a
comparison with results expected for the conventionally-
sized channels. Three-dimensional (3-D) numerical com-
putations of laminar water flow in heated microchannels
were conducted by Toh et al. [9]. They reported that heat
input lowers the frictional losses particularly at low Re,
due to a decrease in µ. The numerical results of Nonino
et al. [10] confirmed that in laminar forced convection, the
effects of temperature dependence of µ on f cannot be ig-
nored. Mahulikar et al. [11] arrived at the need for an
investigation to examine the effect of variations in fluid
properties on f and St, in view of the validity of the
Reynolds’ analogy.

1.1 Scope of this investigation

The Reynolds’ analogy between the skin friction coeffi-
cient (cf) and Stanton number (St) for convective flows
with variations in fluid properties is re-examined. In par-
ticular, the qualitative trend of St changing with cf is
examined in micro-convective flow, which is characterized
by strong variations in fluid properties. The convective-
flow situations considered give regions of validity of the
Reynolds’ analogy, which is attributed to a physical basis.
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Reynolds’ analogy has been revisited in the past, e.g. for
studying the minimum-dissipation transport enhancement
by flow destabilisation [12].

2 Problem formulation and definition

The cf definition is based on the shear stress at wall (τw)
and dynamic pressure (1

2ρu2
m) as cf = τw/(1

2ρu2
m), where

τw = µw(∂u/∂r)w; and the subscript ‘m’ refers to the
mean value. The St is defined based on the convective
heat transfer coefficient (h) as St = h/(ρumcp), where
cp is the specific heat at constant pressure. For internal
flows, f is defined based on the pressure gradient along
the flow (dp/dz) as, f = (dp/dz)D/(1

2ρu2
m), where D is

the circular tube diameter. When the pressure is uniform
over the cross-section, i.e. (dp/dr) = 0, (dp/dz) is related
to τw as, (dp/dz) = 4τw/D. This also implies that pressure
change is solely due to entropy generation resulting from
viscous dissipation; thus, f = 4cf . Therefore, for laminar
fully developed flow, cf = 16/ReD, i.e. qualitatively,

cfReD = const. (2)

and the relation, St = Nu/(RePr) reduces to,

St = [Nu/(16Pr)]cf . (3)

For the Constant Wall Heat Flux (CWHF) and Constant
Wall Temperature boundary conditions (BCs), Nu =
const. holds. Therefore, for a constant Prandtl number
(Pr), St increases with increasing cf , and Reynolds’ anal-
ogy qualitatively holds for constant fluid properties. The
actual form can differ from the Reynolds’ analogy for ex-
ternal flows for Pr ≈ 1, i.e. St = cf/2 (e.g. Ref. [13]). It
is popularly believed that qualitatively, St increases with
increasing cf for Reynolds’ analogy to be valid. The va-
lidity of Reynolds’ analogy is understood to imply that
convective heat transfer is more effective at the cost of
increased fluid friction. As an illustration, reducing D im-
proves the effectiveness of convective heat transfer (due
to an increase in h) at the cost of an increase in pressure
drop (due to increase in cf). It is popularly believed that
Reynolds’ analogy is invalid for liquids (since Pr �= 1),
and especially so when variations in fluid properties are
considered [14].

2.1 Re-examination of Reynolds’ analogy for variable
fluid properties

The relation between cf and Re (both are flow parameters)
and the relation between the convective heat transfer per-
formance and skin friction are now analysed. The case of
an inverse dependence of cf and Re given by equation (2),
with ReD = ρumD/µm, reduces to,

(D/um)[(µw/µm)(du/dr)w] = const. (4)

Equation (4) includes µ-variations over the cross-
section; therefore, both µw and µm are incorpo-
rated. For steady incompressible flow through a tube
of constant D, equation (4) reduces to,

Reynolds’ analogy valid ⇒
‘cf⋅ReD = constant’

For water-heated: 

(du/dr)w increases along the flow 
and τw decreases along the flow 

St increases with 
decreasing cf

Sieder-Tate’s 
Property-Ratio
Method is valid 

(Nu/NuCP) = (µm/µw)m

Nu (du/dr)
m

∝

Variable fluid properties Constant fluid properties: St
increases with increasing cf

St·Pr2/3 decreases with decreasing cf

⇒ Chilton-Colburn analogy valid

ΠSµ correlates with Po

w

Fig. 1. Reynolds’ analogy for constant and variable properties
of incompressible fluid.

(du/dr)w ∝ (µm/µw). (4.1)

For water-heated, µm > µw, hence, (du/dr)w is higher
than for the parabolic u(r)-profile with, ‘µm = µw’;
and for the same um, u(r)-profile is flattened compared
to the ‘µm = µw’ case. The (du/dr)w in equation (4.1)
also influences St and Nu, because flatter u(r)-profiles
increase Nu relative to the parabolic u(r)-profile; thus,
Tw is reduced for given Tm and q′′w. Comparing equa-
tions (1) and (4.1), the estimation of Nu based on
the property-ratio method of Sieder & Tate [1] given
by equation (1) is now theoretically explained. Fur-
ther, (Nu/NuCP) = [(du/dr)w/(du/dr)w,CP]m; where,
(du/dr)w,CP = −4um/R, which implies that Nu ∝
[(du/dr)w]m. Thus, Nu is proportional to the wall velocity
gradient raised to the same exponent ‘m’ as in the Sieder-
Tate correlation [Eq. (1)]. Multiplying equation (4.1) by
µw gives,

τw ∝ µm; (4.2)

therefore, the decrease in µm along the flow for the case of
water-heated causes cf to decrease, when Reynolds’ anal-
ogy is valid. From equations (4.1) and (4.2), the Reynolds’
analogy for variable fluid properties is now valid when St
increases with decreasing cf . Since convective heat trans-
fer effectiveness and skin friction are both embedded in cf ,
equation (2) is the basis for Reynolds’ analogy when vari-
ations in fluid properties are considered. Therefore, from
equation (3), the parameter, (StPr/Nu) [=(1/Re)] ver-
sus cf should be plotted, and Reynolds’ analogy is qual-
itatively valid when Re and cf are inversely dependent.
Figure 1 consolidates the implications resulting from the
validity of Reynolds’ analogy when variations in incom-
pressible fluid properties are considered.

Laminar flow of water is now numerically considered,
in which variations in fluid properties have a significant



S.P. Mahulikar and H. Herwig: Fluid friction in incompressible laminar convection 79

influence on the micro-convective heat transfer character-
istics [6]. For water in the temperature range 0–100 ◦C,
µ(T ) varies by 84%, k(T ) by 21%, ρ(T ) by 4%, and cp(T )
by 1% (e.g. Ref. [15]). Because ρ(T ) and cp(T ) variations
are insignificant relative to µ(T ) and k(T ) variations, this
investigation assumes invariant ρ and Cp.

2.2 Conservation equations

The following steady state continuum-based incompress-
ible laminar conservation equations for 2-D with axisym-
metry, as elaborated in Mahulikar and Herwig [5] are nu-
merically solved.

2.2.1 Continuity equation [considering radial (r-direction)
flow]

(i) Dimensional form

(v/r) + (∂v/∂r) + (∂u/∂z) = 0. (5)

(ii) Dimensionless form

(v̄/r̄) + (∂v̄/∂r̄) + (∂ū/∂z̄)/2 = 0; (5.1)

where, ū = u/um, v̄ = v/um, z̄ = z/D, and r̄ = r/R.

2.2.2 Axial (z-direction)-momentum equation

(i) Dimensional form

ρ[v(∂u/∂r) + u(∂u/∂z)] = −(∂p/∂z) + [(µ/r)

+ (∂µ/∂r)][(∂u/∂r) + (∂v/∂z)] + µ[2(∂2u/∂z2)

+ (∂2u/∂r2) + (∂2v/∂r · ∂z)] + 2(∂µ/∂z)(∂u/∂z).
(6)

(ii) Dimensionless form

2v̄(∂ū/∂r̄) + ū(∂ū/∂z̄) = −1
2
(∂p̄/∂z̄) + (2/ReD)

· [(µ̄/r̄) + S̄µΠSµ(∂θ/∂r̄)][2(∂ū/∂r̄) + (∂ν̄/∂z̄)]

+ (2µ̄/ReD)
[
(∂2ū/∂z̄2) + 2(∂2ū/∂r̄2) +

∂2ν̄

∂r̄∂z̄

]

+ (2S̄µ/ReD)ΠSµ(∂θ/∂z̄)(∂ū/∂z̄); (6.1)

where, p̄ = p/(1
2ρu2

m), µ̄ = µ/µm, S̄µ = Sµ/Sµm

(Sµ = ∂µ/∂T ).

2.2.3 Radial (r-direction)-momentum equation

(i) Dimensional form

ρ[ν(∂ν/∂r) + u(∂ν/∂z)] = −(∂p/∂r) + 2[(µ/r)

+ (∂µ/∂r)](∂ν/∂r) − (µν/r2) + µ[(∂2ν/∂z2)

+ 2(∂2ν/∂r2) + (∂2u/∂r∂z)]
+ (∂µ/∂z)[(∂ν/∂z) + (∂u/∂r)]. (7)

(ii) Dimensionless form

2ν̄(∂ν̄/∂r̄) + ū(∂ν̄/∂z̄) = −(∂p̄/∂r̄) + (8/ReD)

· [(µ̄/r̄) + S̄µΠSµ(∂θ/∂r̄)](∂ν̄/∂r̄) + (µ̄/ReD)

·
[
(∂2ν̄/∂z̄2) − 4(ν̄/r̄2) + 8(∂2ν̄/∂r̄2) + 2

(
∂2ū

∂r̄∂z̄

)]

+ (S̄µ/ReD)ΠSµ(∂θ/∂z̄)[(∂ν̄/∂z̄) + 2(∂ū/∂r̄)].
(7.1)

2.2.4 Energy equation

(i) Dimensional form

ρcp[ν(∂T/∂r) + u(∂T/∂z)] = [(k/r) + (∂k/∂r)]

· (∂T/∂r) + k(∂2T/∂r2) + (∂k/∂z)

· (∂T/∂z) + k(∂2T/∂z2). (8)

(ii) Dimensionless form

PeD[2ν̄(∂θ/∂r̄) + ū(∂θ/∂z̄)] = 4[(k̄/r̄) + S̄kΠSk

· (km/km,in)(∂θ/∂r̄)](∂θ/∂r̄) + k̄[4(∂2θ/∂r̄2)

+ (∂2θ/∂z̄2)] + ΠSkS̄k(km/km,in)(∂θ/∂z̄2); (8.1)

where, θ = km,in(T − Tm,in)/(q′′wD), P eD = ReDPr, k̄ =
k/km, and S̄k = Sk/Skm(Sk = ∂k/∂T ).

Though the dimensional forms of the governing equa-
tions are solved, the dimensionless forms are presented
to better illustrate the convective-flow physics. The mo-
mentum and energy equations are mutually coupled,
because µ(T )-variations and radial flow (ν �= 0) in-
duced by µ(r, z)-variations are incorporated. In equations
(6.1), (7.1), and (8.1), the dimensionless groups, ΠSµ =
Sµmq′′wD/(µmkm) and ΠSk = Skmq′′wD/k2

m, represent the
ratio of variation in properties to the properties. High val-
ues of ΠSµand ΠSk denote strong effects due to varia-
tions in fluid properties on convective flow characteristics.
These groups are the product of temperature perturba-
tion parameter [=f(q′′wD/k)] and dimensionless property
sensitivities, Sµ(T/µ) and Sk(T/k) [2]. Their significance
is the ratio of Brinkman numbers (Br), which are based
on the ratio of momentum transfer to heat conduction in
the fluid [5].

2.3 Boundary conditions (BCs)

The following flow and thermal BCs are applied to the
computational domain:

(i) The BCs of symmetry are applied at the axis of
the micro-tube (r = 0); therefore, ν = (∂u/∂r) =
(∂p/∂r) = (∂T/∂r) = 0. In dimensionless form, they
are respectively given as (for r̄ = 0): ν̄ = (∂ū/∂r̄) =
(∂p̄/∂r̄) = (∂θ/∂r̄) = 0.

(ii) The no-slip and no normal flow BCs are applied at
the non-porous rigid wall (r = R), i.e. uw = νw = 0;
and for the applied heat flux at the wall, (∂T/∂r)w =
q′′w/kw. In dimensionless form, they are respectively
given as (for r̄ = 1): ūw = ν̄w = 0; and (∂θ/∂r̄)w =
1
2 (km/kw).
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(iii) At the inlet-upstream location (z = 0−), laminar
fully-developed flow BCs for constant fluid prop-
erties are used. Hence, the inlet u-profile is given
as, u(r, 0−) = 2um(1 − r̄2); and the inlet T -profile
for CWHF BC is given as, T (r, 0−) = T0,in +
(q′′wR/k)[r̄2 − (r̄4/4)] (where, T0,in = 20 ◦C). In di-
mensionless form, they are given as (for z̄ = 0−),
ū(r̄, 0−) = 2(1 − r̄2), and θ(r̄, 0−) = 1

2 [r̄2 − (r̄4/4) −
7
24 ]. From the inlet location onwards and up to the
exit [z = 0+ to z = L, i.e. z̄ = 0+ to z̄ = (L/D)],
µ(T ) and k(T ) variations are switched on.

(iv) At the exit-plane, the only variable whose value is
specified is, pex = patm = 1.013×105 Pa (I.S.A. pres-
sure). Neumann boundary conditions are imposed on
the other transport variables (u, ν, T ), i.e. the rates of
change of their dimensionless profiles along the flow
are equated to zero. The downstream gradient of u
is zero, due to the assumption of fully-developed flow
at the exit (which is exact for ReD → 0). This results
in, νex = 0, thereby also imposing the ν-gradient at
the exit-plane and its’ downstream to zero.

3 Numerical solution and inference
from theoretical analysis

The computational domain comprises a circular micro-
tube with radius, R = 50 µm, and length, L = 5 mm
[(L/D) = 50]. Equations (5–8), with BCs are simul-
taneously solved by 2nd-order accurate Implicit Finite-
Volume differencing scheme. The ‘Semi-Implicit Method
for Pressure-Linked Equations’, i.e. SIMPLE pressure-
differencing scheme is used for obtaining pressure distri-
bution. Graded mesh with 10 000 cells [= 200 (axial)×50
(radial), (∆z/∆r) = 25] with finer grid spacing in the
vicinity of the inlet and the wall, is used. This grid den-
sity is conservatively selected based on grid independency
of the final results (St and cf values). Also, diminishing
returns were observed as the grid density was increased
towards 200× 50, in terms of computational time and ac-
curacy of the numerical results. Because axial temperature
gradients are less critical than radial, the computational
cells have a high aspect ratio [(∆z/∆r) = 25]. Increas-
ing the number of grid points in the axial direction to
make, (∆z/∆r) → 1, results in unreasonably high compu-
tational effort and time. The maximum deviations in St
and cf results for grids, 200×50 [(∆z/∆r) = 25], 250×40
[(∆z/∆r) = 16], 180× 50 [(∆z/∆r) = 27.8], and 200× 45
[(∆z/∆r) = 22.5], are less than 0.05%. Additional details
pertaining to the convergence of solution, accuracy of the
numerical results, and validation with benchmark cases
for constant fluid properties are in [6] .

Water is one of the most representative liquids that
have high Sµ; using a different liquid with different Sµ

but the same sign is expected to change the results only
quantitatively. In this investigation, the quantitative re-
sults are unimportant, as inferences are based exclusively
on their trends. The µ(T ) in kg/ms for single-phase water

is given as (Ref. [16]),

µ(T ) = µ(Tref)(T/Tref)n exp[B(T−1 − T−1
ref )]; (9)

where, n = 8.9, B = 4700, and µ(Tref) = 1.005 ×
103 kg/ms at Tref = 293 K. The k(T ) in W/mK for single-
phase water is given by cubic fit as, k(T ) = −1.51721 +
0.0151476 T − 3.5035× 10−5 T 2 + 2.74269× 10−8 T 3. This
variation is obtained as a least-square-error fit of data
from Holman [15] in the operating temperature range 274–
372 K. Incorporating µ(T ) and k(T ) variations for water,
results are generated for u(r, z), ν(r, z), and T (r, z) pro-
files; and the variations of St, Pr, cf , and Re along the
flow are deduced.

Table 1a gives cf,in, cf,max, and cf,ex, Rein and Reex,
and Stin and Stex, for um =0.05, 0.75, 1.5, 2.5, and
3.0 m/s, for various allowable q′′w for single-phase flow.
Figure 2 gives (1/Re) versus cf for um = 0.05, 1.5, and
3.0 m/s, for different q′′w; for examining Reynolds’ anal-
ogy.

Figure 3 gives St versus cf for the same cases as in
Figure 2, which indicates reversed trends of variations
of St versus cf and (1/Re) versus cf . The St increases
along the flow; but cf , which depends on ‘µw(∂u/∂r)w’
first increases, reaches a maximum (cf,max) at axial lo-
cation zcf,max, and then decreases (Fig. 4). The µw de-
creases for water-heated [Eq. (9)]; and (∂u/∂r)w first
increases, reaches a maximum [(∂u/∂r)w,max] at axial
location zugw,max, and then decreases along the flow
(Fig. 5). The variation in (∂u/∂r)w is due to flattening of
the initially parabolic u(r)-profile, due to hydrodynamic-
undevelopment of flow [17]. Table 1b lists z̄cf,max and
z̄ugw,max for the same um and q′′w as in Table 1a; which
shows that z̄cf,max < z̄ugw,max , because (∂u/∂r)w trend is
retarded by µw-decrease along the flow.

The Reynolds’ analogy would be popularly believed to
be invalid when St decreases with increasing cf ; since, for
constant fluid properties, St ∝ cf [Ref. Eq. (3)]. This be-
havior is observed over most of the flow field for low um

(low ReD), as indicated by Figure 3a. But from Figure 2a,
because Re and cf are inversely dependent over a signifi-
cant percentage of the flow regime, Reynolds’ analogy for
variable fluid properties is predominantly valid. Figure 6
shows the variation of St Pr2/3 versus cf , which is the
parameter in the Chilton-Colburn analogy [18] that also
considers the variation, Pr(T ). The Chilton-Colburn anal-
ogy is also largely valid (qualitatively) in Figure 6a, and
its’ validity in Figure 6c is questionable. Therefore, the
Chilton-Colburn analogy of St Pr2/3 increasing with in-
creasing cf is qualitatively valid when St increases with
decreasing cf .

Figures 2, 3, and 6 illustrated the analogies and their
validities considering both µ(T ) and k(T ) variations. For
illustrating the role of µ(T )-variation only, Figure 7
illustrates the variations of the following (for
um =0.75 m/s and q′′w = ±10 and ±30 W/cm2):
(a) 1/Re versus cf , (b) St versus cf , and (c) St Pr2/3

versus cf . It is seen that qualitatively, the trends of
validity of the Reynolds’ analogy are the same as when
both µ(T ) and k(T ) variations are considered.
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(a) (b) (c)

Fig. 2. Variation of (1/Re) versus cf . (a) 0.05 m/s (Reynolds’ analogy largely valid). (b) um = 1.5 m/s. (c) um = 3.0 m/s
(Reynolds’ analogy largely invalid).

Table 1. Variation of convective flow parameters with um and q′′W.

(a) Re, cf , and St

um (m/s) q′′W (W/cm2) Rein, Reex cf,in, cf,max, cf,ex Stin, Stex
0.05 1.0 5, 6 3.179, 3.185, 2.568 0.127, 0.133

2.5 5, 8 3.109, 3.123, 1.909 0.127, 0.138
5.0 5, 12 2.997, 3.024, 1.291 0.127, 0.145

0.75 10 79, 91 0.186, 0.191, 0.168 0.0085, 0.0089
25 86, 119 0.152, 0.162, 0.123 0.0085, 0.0093
50 99, 172 0.114, 0.127, 0.082 0.0086, 0.0098
75 112, 227 0.089, 0.103, 0.062 0.0086, 0.0102
100 126, 283 0.072, 0.086, 0.050 0.0087, 0.0104

1.5 10 158, 170 0.093, 0.096, 0.090 0.0042, 0.0044
25 172, 204 0.076, 0.081, 0.071 0.0043, 0.0046
50 197, 267 0.057, 0.064, 0.051 0.0043, 0.0048
100 251, 406 0.036, 0.043, 0.032 0.0043, 0.0051
125 280, 477 0.030, 0.037, 0.027 0.0043, 0.0052
150 310, 547 0.026, 0.032, 0.024 0.0043, 0.0053
175 340, 618 0.024, 0.028, 0.022 0.0044, 0.0053

2.5 10 263, 275 0.056, 0.057, 0.056 0.0025, 0.0026
25 287, 319 0.046, 0.049, 0.045 0.0026, 0.0027
50 329, 397 0.034, 0.038, 0.034 0.0026, 0.0028
75 373, 481 0.027, 0.031, 0.027 0.0026, 0.0029
100 419, 570 0.022, 0.026, 0.022 0.0026, 0.0030
125 467, 662 0.018, 0.022, 0.019 0.0026, 0.0031
150 516, 753 0.016, 0.019, 0.017 0.0026, 0.0031
175 567, 843 0.014, 0.017, 0.015 0.0026, 0.0032
200 619, 935 0.013, 0.015, 0.014 0.0026, 0.0032
250 722, 1113 0.011, 0.013, 0.012 0.0026, 0.0032
300 825, 1268 0.010, 0.012, 0.011 0.0027, 0.0032

3.0 200 654, 970 0.0111, 0.0139, 0.0126 0.0021, 0.0026
250 861, 1256 0.0094, 0.0111, 0.0104 0.0022, 0.0027
300 990, 1445 0.0087, 0.0099, 0.0095 0.0022, 0.0027
350 1114, 1601 0.0084, 0.0092, 0.0091 0.0022, 0.0027

(b) z̄cf,max and z̄ugw,max

um(m/s) q′′w(W/cm2) z̄cf,max z̄ugw,max

0.05 1.0 0.3605 1.468
2.5 0.3605 1.468
5.0 0.3605 0.927

0.75 10 2.5040 6.355
25 2.6910 6.355
50 2.9798 5.689
75 3.3808 5.819
100 3.6939 6.355

1.5 10 4.3538 13.107
25 5.1838 11.660
50 5.8192 11.268
100 7.2058 11.860
125 7.9617 12.472
150 8.5987 12.893
175 9.0961 13.542

2.5 10 7.9617 22.068
25 8.5987 22.068
50 9.9645 18.775
75 10.8847 19.057
100 11.8597 19.632
125 13.1066 22.068
150 14.2139 22.068
175 15.3870 22.068
200 16.6302 22.068
250 18.4960 24.392
300 20.8217 25.092

3.0 200 18.7751 25.448
250 22.0678 29.242
300 24.7401 30.469
350 29.6462 30.469

3.1 Interpretation based on theorem of minimum
entropy production

Increasing (du/dr)w decreases entropy generation due to
heat transfer (Ṡgen,therm) by increasing St and h, which re-
duces (Tw − Tm). However, increasing (du/dr)w increases
cf , which increases entropy generation due to fluid fric-

tion (Ṡgen,visc) [19]. Thus, the current understanding of
the validity of Reynolds’ analogy is linked to Ṡgen,therm

and Ṡgen,visc having compensating roles. For small changes
in the system state close to equilibrium, convection and
flow follow the Theorem of Minimum Entropy Produc-
tion (TMEP) [20]. As per TMEP, entropy generation is
small and nearly constant in non-equilibrium states in the
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3(a) um = 0.05 m/s (Reynolds’ analogy largely valid) 

1 2 3
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0.125

0.130
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S
t

 = 1 W/cm
2 

2.5 W/cm
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5 W/cm
2 

cf 

(a)

(b)

(c)

Fig. 3. Variation of St versus cf : Examination of Reynolds’
analogy. (a) um = 0.05 m/s (Reynolds’ analogy largely valid).
(b) um = 1.5 m/s. (c) um = 3.0 m/s (Reynolds’ analogy largely
invalid).

vicinity of equilibrium. Therefore, Ṡgen,Tot = Ṡgen,therm +
Ṡgen,visc, is nearly constant; and a change in Ṡgen,therm is
nearly compensated by an opposite change in Ṡgen,visc.

From z = 0 to z = zugw,max, u-gradients change signif-
icantly relative to the region from z = zugw,max to z = L.
This is attributed to the process of flow undevelopment
from constant (prior to inlet) to variable fluid proper-
ties (inlet onwards downstream). In this region, the in-
duced radial flow is non-negligible, and convective heat
transfer is significantly influenced by radial convection [6]

(a)

(b)

0 10 20 30 40 50
z/D

0.008

0.010

0.012

0.014

(c) um = 3.0 m/s. 

 = 200 W/cm2

250 W/cm2

300

350

c f

(c)

Fig. 4. Variation of cf versus z̄. (a) um = 0.05 m/s. (b) um =
1.5 m/s. (c) um = 3.0 m/s.

and (du/dr)w. Therefore, TMEP is not applicable and the
Reynolds’ analogy is invalid from z = 0 to z = zugw,max;
but after z = zugw,max, variations in u-gradients sub-
side. Thus, Reynolds’ analogy is valid when changes in
field variables determined by linear constitutive laws in
convective fluid flow, are small enough for TMEP to be
applicable. The validity of Reynolds’ analogy for small
changes in field variables is corroborated by the linear
asymptotic analysis of Herwig [2]. It was demonstrated
that for small perturbations in fluid temperature, the
results of the asymptotic approach are in agreement with
the predictions based on Sieder and Tate [1]. But if these
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(a)

  .

(b)

  .

(c)

Fig. 5. Variation of (∂ū/∂r̄)w versus z̄. (a) um = 0.05 m/s.
(b) um = 1.5 m/s. (c) um = 3.0 m/s.

perturbations are large, then higher order terms must also
be considered in the Taylor series expansion of the fluid
property variations.

4 Significance of additional dimensionless
group, ΠSµ

The ΠSµ emerged from the non-dimensionalisation of gov-
erning conservation equations [Ref. Eqs. (6.1) and (7.1)].

(a)

(b)

(c)

Fig. 6. Variation of St Pr2/3 versus cf : examination of
Chilton-Colburn analogy. (a) um = 0.05 m/s (Chilton-Colburn
analogy largely valid). (b) um = 1.5 m/s. (c) um = 3.0 m/s
(Chilton-Colburn analogy largely invalid).

It is also supported by a dimensional analysis for the de-
pendence of friction factor given as,

f = φ(ρ, um, D, µ, k, Sµ, q′′w); (10)

where, φ is a mathematical function. The dimensions of
the 7 parameters are given as follows: [ρ] = [M1L−3],
[um] = [L1T−1], [D] = [L1], [µ] = [M1L−1T−1], [k] =
[M1L1T−3Θ−1], [Sµ] = [M1L−1T−1Θ−1], and [q′′w] =
[M1T−3]. The M , L, T , and Θ, are the fundamental di-
mensions of mass, length, time, and temperature, respec-
tively. Equation (10) has 7 parameters and there are 4 fun-
damental dimensions; hence, there are three dimensionless
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(a)

(b)

(c)

Fig. 7. Examination of analogies for um = 0.75 m/s, consid-
ering µ(T )-variation only. (a) 1/Re versus cf . (b) St versus cf .
(c) St Pr2/3 versus cf

groups as per the Buckingham-Π theorem. Choosing ρ,
um, D, and k, as the recurring parameters, the 4 funda-
mental dimensions are expressed as, [M ] = [ρD3], [L] =
[D], [T ] = [D/um], and [Θ] = ρu3

mD/k. From the re-
maining 3 non-recurring parameters µ, q′′w and Sµ, the
3 dimensionless groups are obtained as follows: Π1 =
ReD = ρumD/µ, Π2 = Brqw = µu2

m/(q′′wD), and Π3 =
BrSµ = Sµu2

m/k. The Brqw is Brinkman number based
on q′′w, and BrSµ is Brinkman number based on Sµ [5];
and ΠSµ = BrSµ/Brqw = Sµq′′wD/(µk). This dimen-
sional analysis and the earlier non-dimensionalisation of

(a)

(b)

(c)

Fig. 8. Variation of Po along flow. (a) um = 0.05 m/s. (b)
um = 1.5 m/s. (c) um = 3 m/s.

the conservation equations suggest the dependence given
by equation (10) to reduce to the form, f = φ(ReD, ΠSµ).

The role of ΠSµ in flow friction is now investigated
considering µ(T ) and k(T ) variations, and the variation
of the Poiseuille number (Po = fReD) along the flow is
studied in Figure 8. For low q′′w that are applicable for low
um, Po ≈ 64, except in the vicinity of the inlet (Fig. 8a);
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9(c) um = 1.5 m/s, only Re-analogy valid data 

Po = −4.93193ΠSµ+62.1377 

ΠSµ = [Sµm⋅ ⋅D/(µm⋅km)] 

Fig. 9. Variation of Po versus ΠSµ. (a) um = 0.05 m/s, for complete data. (b) um = 0.05 m/s, only Re-analogy valid data. (c)
um = 1.5 m/s, only Re-analogy valid data. (d) um = 3 m/s, only Re-analogy valid data.

but for higher q′′w applicable for higher um, Po deviates
from 64 (Figs. 8b, 8c). Figure 9 shows the variation of the
data obtained from numerical experiments on the plot of
Po with ΠSµ, for um = 0.05 m/s, 1.5 m/s, and 3 m/s. For
um = 0.05 m/s, the complete data is shown in Figure 9a,
and the data for which Reynolds’ analogy is valid is shown
in Figure 9b. Figure 9a shows that the same trend is fol-
lowed for the three different q′′w in the region where the
Reynolds’ analogy is valid. Figures 9b–9d indicate a corre-
lation of the numerical data; therefore, Po correlates with
ΠSµ in the region where the Reynolds’ analogy is valid.

For large q′′w that are enabled at high um, ΠSk in the
energy equation [Ref. Eq. (8.1)] is also expected to affect
Po. Its’ role in T (rz)-variation, which determines µ(r, z)-
variation that affects u(r, z) and v(r, z) fields and f , should
be investigated as scope for future research.

5 Conclusions

(i) The validity of Reynolds’ analogy is determined by
the inverse dependence of Reynolds number with skin
friction coefficient (cf). Its’ validity for convective-
flow with constant fluid properties results in an in-
creasing Stanton number (St) with an increasing cf ,
which is well-known. But its’ validity for incompress-
ible convective-flow with variations in fluid properties
results in an increasing St with a decreasing cf , which
is unexpected.

(ii) The Chilton-Colburn analogy of St Pr2/3 increasing
with increasing cf is qualitatively valid whenever the
Reynolds’ analogy is valid.

(iii) The Sieder-Tate’s property-ratio method for obtain-
ing Nusselt number (Nu) corrections has a theoreti-
cal basis, which is the validity of Reynolds’ analogy.

(iv) The Nu is proportional to the wall axial velocity gra-
dient raised to the same exponent as in the Sieder-
Tate correlation, when Reynolds’ analogy is valid.

(v) The validity of the Reynolds’ analogy is linked to the
applicability of the Theorem of Minimum Entropy
Production. The region of invalidity of the Reynolds’
analogy is attributed to the phenomenon of hydrody-
namic undevelopment of flow.

(vi) The Poiseuille number correlates with the dimension-
less group, ΠSµ = BrSµ/Brqw = Sµmq′′wD/(µmkm),
in the region of validity of the Reynolds’ analogy.
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